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PREFACE

This report was prepared by Purdue University, School of Electrical
Engineering, Prof. J. E. Gibson acting as Principal Investigator, under
USAF Contract No. AF 29(600)-1933, This contract is administared under
the direction of the Guidance and Contrr? Division, Air Force Missile
Development Center, Holloman Air Force Base, New Mexico by Mr, J. H. Gengel-
bach, the initiator of the study.
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FOREWORD

This is the fifth and last report to be completed under the Air Force
Project Number AF 29(600)-1933. The task specified under the above contract
is the specification of linear and nonlinear control systems. Toward the
achievement of this purpose, the first three reports deal with linear control
systems, while the iast two concentrate on nonlinear systems,

Interim Report #1, titled "Specitication and Data Presentatien in Linear
Control Systems" was issued in July of 1959. This report was circulated
through the control industry and the universities, and a number of the lead-
ing industrial concerns in the country weras visited in connection with the
contents of this report. As a result of this feedback, the basic material
of this interim report was expanded and published in two final reports,
namely, Final Report, Volume I, "Specification and Data Presentation in
Linear Control Systems," October 1960, and Final Report, Volume II,
"Specification and Data Presentation in Iinear Control Systems, - Part Two,"
May, 1961. These volumes also carry the Air Force Designation AFMDC-TR-A1-5,
Parts One and Two. The first of these final reports deals with the specifi-
cation of continuous systems which can be described by linear differential
equations with constant coefficients. The second considers Sampled Data
Systems, linear Time Variable Parameter Systems, and Performance Indicies,

Final Report, Volume III is a tutorial report titled "Stability of
Nonlinear Contrecl Systems by the Second Method of ILiapunov," and dated
May, 1961, (AFMDC-TR-61-6). This report was written to acquaint the interest-
ed reader with a technique, common in the USSR, that will serve as a tool in
the future nonlinear work, and not as a direct attack on the nonlinear con-

trol specification problem.




- iy -

The present report is an interim report which reviews the status of
the nonlinear control art, and specifically the area of nonlinear control
system specification, While tha complexity of this problem is at least
an order of magnitude greater than in the linear case, it is felt that the
ideas presented here form the foundation from which a more detailed and

explicit attack on the general nonlinear specification problem may be built.




ABSTRACT

This ie an interim report on the specification of nonlinear automatic

- D>V s
control systems, iH%is concerned primarily with assessing the state of the

art of nonlinear control as a prelude to the solution of the actual specifi-
cation problenm,

As an introduction, the classical methods of nonlinear analysis are
discussed, and the reasons for the inadequacy of these techniquee for auto-
matic control systems are explained. The two generally known methods of
analyzing the stability of autonomous nonlinear control systems, namely
phase plane analysis and “he cescribing function, are discussed and a

——

summary of/tﬂ;’capabilities and 11432;2535350 Method is

presented, The concept of the state variable and the state space is intro-
duced in some detaile as it is expected that this will be the medium through
which the stabi *“§¢l<i response of the majority of nonlinear systems will
be handled, The stability of the nonautonomous systeq‘ié.als discussed from
the point of view of signal stabilization and the dual input Adescribing

function. e e
-

~
It ic pointed odt that in addition to the stability of a nonlinear sys-

tem, its response ﬁo a given input is of particular interest. Chapters 3 and
V oArQ (i3 S
L are devoted to the response of autonomous and nonautonomous systemﬁA As a
criterion for specification, the time optimum system is stressed, and dis-
tinction is made between the solution of the time optimum problem 23 = psr-
formance index and the synthesisz of the optimm switching boundaries. The

phase plane is discussed for forced systems and the work of Wiensr is mention-

ed in connection with the response of nonlinear systems to randaom inputs.
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CHAPTER 1

INTRODUCTION TO NONLINEAR CONTROL SYSTEMS

1.1 Introduction

A1l physical systems are nonlinear, although in many systems this non-
linear effect is so slight that satisfactory results are obtained with
linear models. Many physical systems are nonlinear simply due to the lack
of component perfecticn. However, a significant number of systems are non-
lear through conscious design. Many times a nonlinear system will be
lighter, cheaper, more reliable, easier to fabricate and have better per-
formance than an equivalent linear system., Thus it is of great importance
to the Air Force that nonlinear control systems be properly specified,

This is an interim report on the specification of nonlinear automatic
control systems, It has three objectives:

a) to show why classical nonlinear mechanics has not provided
the tools needed by the automatic control engineer thus far.

b) to assessthe present state of the nonlinear automatic control
art.

c) to point oub the directions future work will take.

1,2 Classical Nonlinear Mechanics and Nonlinear Aralysis as Applied to

Automatic Control

Classical nonlinear mechanics has generally been used for the analysis
of nonlinear problemsg, For some few problems it has been possible to find
closed form solutions in terms of the simpler functions. Generally, how-
ever, this attack fails. A number of books have been written on special
nonlinear diiferential equations and it would not be difficult to fill re-~

port after report with such considerations. This is not necessary, however,
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nor would it even be proper, since seldom, if ever, will it be possible to
arrange even a moderately complex control system into a form which would
make use of available solutions., This is not to say, of course, that a
background of such techniques will not prove valuable to a designer. In
fact it is obvious that in a difficult field such as nonlinear automatic
control it is desirable to have as much training as possible,

It has been long realized, of course, that closed form solutions to
nonlinear cifferential equations are difficult to obtain and exist for
only a few special nlagses, For 100 years or more analysts have been
concerned with the approximate solution of nonlinear differential equa-
tions. Such series approximation techniques as perturbation and reversion
are well known, Other methods such as variation of parameters and harmonic
balance are also widely used., The mathematical justification of these
methods generally requires that the nonlinear variation be small and/or
slow and/or smooth. Sometimes the engineer is faced wi‘% nonlinear con-
trol systems in which none of these restrictions are valid and simulation
is the only practical solution. It is apparent that classical exact
solutions are of little value.

A number of excellent taxts are available that will introduce the
engineer to nonlinear analysis. The recent book by Cunningham (1] is
notable for the clarity of presentation and the numerous worked exsmples.
Other well known beoks are those by Stoker [2], Minorsky [3] and Andronow
and Chaikin [4). Somewhat more intense mathematically are the books by

Lefschetz [5] and Bellman [6].

1.3 Approximate Methods for Nonlinear Control

Modern approximate techniques of nonlinear system analysis are direct
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outgrowths of classical analysis, and one could probably relate them
directly to Polncare! and liapunov, if there was any point in so doing.
This discussion will be avoided by pointing out that the newness lies
in the emphasis and phrasing of the problem and the prominence of geo-
metric and graphical interpretation, but not in techniques of analysis.

Chapter 2 of this report considers the more important of these
techniques in detail, so they need not be discussed here,

The stats of the art in the analysis and synthesis of nonlinear
control systems is unsatisfactory, especially in its lack of generality.
It is almost impossible tc rely on a single analysis to illustrate all
of the possible phenomena that can occur in a single system. For ex-
ample, it takes a different analysis to demonstrate jump phenomena than
it does to show subharmonic oscillation or frequency entrainment for the
same system., It does not appear that this condition will change in the
near future, because approximate analysis is not completely reliable,
and some other method must be used to supplement the analysis of a non-
linear control system, This other approach, widely used now, is computer

similation which is discussed in the next section,

1.4 Computer Simulation

The major emphasis in this report is on analysis, becauce it is de-
sired to obtain an understanding of systems in general to facilitate the
evaluation and specification problem, However, it is recognized that
engineers use computer simulation for nonlinear system analysis more than
they use mathematical methods, There are several reasons for this,

1. Mathematical methods are not available or are not tractable for

the determination of system response, It is usually less ex-




pensive to obtain a transient response on a computer than by
analysis.

2. In a nonlinear system complete imowledge of any particular re-
sponse does not necessarily imply knowledge of any other response.
Thus, it may be neceusary to obtain thousands of responses to
establish confidence in a design., This makes all but the simplest
calculations uneconomical,

3. Actual systems are often much more difficult to analyze than simple
text book examples., It may be necessary to include some actual
pleces of hardware in the simulation if they can not be described
adequately. Analysis, of course, is not this flexible,

4. Engineers who do design work may not be aware of the mathematical
tools available for design and evaluation,

5. Design engineers are usually more interested in a specific system
than general trends which are available from mathematical analysis.
Hence, a thorough simulation is often adequate for their purposes.
For example, the parameters of a simulated system can be varied and
the resulting response observed for system synthesis,

The present inadequacy of nonlinear analysis should not lead one to
abandon all attempts at analysis and to a complete reliance on computer
similation; a combination of simulation and analysis seems more nearly
optimum than simulation alone, Some analysis, even with incomplete or in-
exact models, will yisld insight not always available from simulation.
Major advances in theory, and hence hardware, will be delayed if attention is
not given to the mathematical treatment of systems,

Thus the tentative recommendation of the Purdne group will no doubt in-
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volve a parallel use of computer simulaticn and modern approximste ana-

lytical techniques for the gpecification of nonlinear control systems.

1,5 Future Trends

In each of the following chapters an assessment of the importance
upon future developments of the techniques discussed is given. In fact,
because of the present incompleteness of existing techniques, a great
deal of space in this report seems to be given over to damning the status
quo. This may be interpreted as an undesirable situation and to provide
cause for discouragement, The Control and Information Systems laboratory,
on the other hand, feels that specifically pointing out the deficiencies
means that we have at least progressed to the point where we recognize the
problem. This could not have been said of most automatic control engineers
as late as 4 or 5 years ago.

The reader of this repcrt, especially if he has been concerned with
automatic control systems for a decade or more, will recognize an almost
revolutionary change in techniques and emphasis compared with what might
be called, "Classical Automatic Control", This is the collection of tech-
niques available in almost all of the texts in English. The "New Automatic
Control" is more advanced mathematically and calls upon the digital computer
as an on line element more-and-more frequently. It works frequently in a
non-physical state space and attempts to find the theoretical limits of
performance based upon ultimate physical limitations on the system, such
as finite energy or torque or velocity, but without consideration of the
detailed construction of any particular configuration. In other words, the
optimm problem becomes important. The ultimate time optimum systems are

studied and the self optimizing or adaptive problem is of concern.
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The "New Automatic Control* is, as yet, essentially an academic
discipline. The reader will see that faw if any practical systems have
benefited as yet from this approach., However, only 5 to 10 years after
the classicai automatic control matured in the early 1940's, it became
an essential part of engineering system desizan, It seems entirely
possible that the 1960!'s will witness a similar impact on industrial
and aerospace system design due to the "New Automatic Control",

When reading some of the mathewatical work contained in the report,
the reader should keep in mind that a mathematical treatment of a problem

is usually the starting point for engineering effort, rather than a

practical problem solution. For example, while the formal solution is
desired for the general, time varying, optimum, switched system problem,

it mmst be realized that practical, general problems are either not
mathematically tractable or are trivial. In addition, it should be

poeinted out that practical aspects of the problem such as end point
switching, instrument imperfections, etc. have not been included in the
general formulation. This single example serves the purpose of illustrating
the obvious -- much research remains to be done in the nonlinear area of

control systems,
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CHAPTER II

STABILITY OF AUTONOMOUS SYSTEMS

2.1 Intrecduction

Tne word "stability" is frequently interprsted by engineers as that
property of a system which yields a bounded response to any bounded input
or load disturbance, While such interpretation is correct in linear,
stationary systems, it may easily lead one to erroneous conclusions in
the case of nonlinear systems. In nonlinear stationary systems the
"boundedness" of response to bounded inputs no longer guarantees that the
unforced system response will return to the equilibrium state asymptotically
in time. Neither is the converse true (i.e., asymptotic stability does not
always imply total stability or stability in the presence of bounded inputs
and/or load disturbances).,

Additional complications arise due to the fact that in nonlinear sys-
tems stability of an equilibrium state is no longer a global concept but only
a local system property (i.e., a nonlinear system may be stable for sufficient~
ly small initial disturbances and become unstable because of a sufficiently
large disturbance, and vice versa). Furthermore, it is conceivable that a
nonlinear system may be stable for certain bounded inputs and become unstable
for other bounded inputs. Hence, in the analysis, synthesis, and specifica—
tion of nonlinear automatic control systems, total stability (i.e., stability
in the presence of any bounded input or disturbance) is the ultimate (al-
though not always necessary) goal., Nevertheless there are several important
reasons why the stability of autonomous (unforced, stationary) control sys-

tems is of considerable importance:
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1) It is important to know the behaviour of the system in the absence
of inputs and load disturbances,

2) In the presence of constant inputs and/or constant load disturbances
& nonlinear control system can still be described by a set of auto-
nomous differential equations,

3) Stability of the equilibrium state (i.e,, stability in Liapunov
sense) or boundedness of unforced stationary system response (i.e.,
stability in lagrange sense (la Salle [7].) implies boundedness of
the response to bounded inputs or total stability in most (if not
all) physical systems.

This chapter is devoted to a discussion of the more general or more

promising methods of stability analysis of nonlinear autonomous systems,

2.2 The Describing Function Method of Analysis

The describing function (D.F.) method of analysis is appealing from a
practical point of view because it is an attempt to linearize a certain class
of nonlinear systemsand then apply the methods of linear system stability
analysis, Engineers are accustomed to making simplifying assumptions and
using linearized models for the analysis and synthesis of nonlinear systems.,
The D,F, is based on the method of harmonic balance (Kryloff [8]), (Cunning-
ham [1]). Several papers (Goldfarb [9]), (Kochenburger [10]), (Tustin{11]),
(Oppeit [12] ) have advanced this idea. The most common describing function,
or the so-called equivalent gain, is defined as the complex ratio of the
amplitude of the fundamental component of the output of a nonlinearity to the
amplitude of the input to the nonlinea-ity when the input is sinusoidal. Re-
strictions such as low pass filtering must be met by the system for the

analysis to be valid. A detailed discussion of the method is unnecessary here
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since the D.F. is one of the most well known methods available for the
analysis of autonomous nonlinear systems,

The D.F. method can be used to determine the stability of an auto-
nomous system and provides a designer with the information necessary to
synthesize stabilizing networks. If an autonomous system has a stable
limit cycle, the approximate amplitude and frequency of the first harmonic
term of the oscillation can be predicted. It is possible to obtain higher
harmonic correction terms (Johnson [13] ) which improve the accurscy of the
method. The work required to calculate the correction terms is generally
not justified because these terms are relatively small in systems which
possess adequate low-pass filter characteristics, Their main utility is
the confidence established in the validity of the D.F. if these correction
terms are relatively small, Gille, et al.([lh],'p 43) point out that cases
are unusual where the error introduced in neglecting the higher harmonic
terms exceeds 10 per cent, and that the accuracy of limit cycle frequency
obtained from the D.F. is usually better than 5 percent.

Levinson [15] and other investigators (Hill [16]) have used the de-
scribing function to predict the closed loop frequency response of station-
ary nonlinear systems, By writing a quasi-linear error transfer function
and solving (usually by means of a computer or graphical techniques) for a
value of error which satisfies this quasi~linear transfer function, error
is determined. Knowing the error, the response may then be found. Multiple
roots of the solutions of the above transfer function yield information
about the jump pheriomena of the system. This is a laborious process and
different results are obtained for different amplitudes of the input, since

the system is nonlinear. This method is valid only for nonlinear systems
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that are totally stable. If this point is not recognized, it is possible
to obtain erroneous results. Further discussions regarding frequency re-
sponse of nonlinear systems are given in the section on Dual Input Describ-
ing functions in the next chapter,

The D.F. method continues to be a vehicle for nonlinear research as
well as design. Perhaps the major disadvantage of the method is that it
is limited to frequency analysis, Of course, other methods share this
deficiency also.

Tsypkin [if] has presented a method equivalent to the D.F. method for
the exact analysis of unforced on-off (relay) systems. This method retains
all harmonics generated by the nonlinear element. When harmonics are
neglected and only the fundamental camponent of the output of the nonlinear
element is used, this method reduces to the conventional describing function
method of analysis, The use of this method is not warranted in systems which
possess sufficient high-frequency attenuation such that the approximate de-
scribing function method of analysis is adequate. Furthermore, the method
of Tsypkin is practical only with very simple nonlinearities, such as a re-

lay, and cannot be applied to more general types of nonlinear systems,

2,3 Phase Plane Analysis

The phase plane method of analysis is applicable directly to only second
order nonlinear autonomous systems, This method consists of i.vestigating
the behavior of the trajectories of system response in the plane of some
system variable and its first time derivative, A detailed discussion of the

phase plane method of analysis can ixx found in many textbooks on nonlinear
analysis {1] .
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A generalization of the phase plane analysis is the analysis in the
phase space, i.e,, in the space of a variable of the system and its n-1
time derivatives where n is the order of the system, Unfortunately, the
amount of labor involved in constructing the phase trajectories in systems
of higher than second order is prohibitive {18]., Hence the practical use
of the phase space (phase plane) method of stability analysis is limited

to only the second order autonomous nonlinear systems,

2.4 The Concept of State Space

Before proceeding with the analysis and synthesis of a control system,
one has first to find a mathematical description of such a system, In
stationary linear systems this is usually accomplished by first expressing
the interrelationships between various variables of the system in terms of
. linear differential equations with constant coefficients. Then these
differential equations are changed (by means of the Laplace transform or
other integral transforms) into transfer functions and combined to yield
an overall transfer function.

In nonlinear systems the Laplace transformation is no longer applicable,
and thus the mathematical description of the system must be retained in the
form of differential equations. The most convenient form for many purposes
is a description of the system by means of n first order differential equa-
tions, This can always be done in a straight-forward manner by properly
identifying the variables appearing in the system. The number of independ-
ent first order differential equations is equal to the order of the system
(i.€, to the order of a single differential equation describing the system).
The set of n independent first order equations completely describes the

state of the system at any time t. Hence a set of n linearly independent
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variables will be referred to as a set of state variables and the Euclidean
space of these state variables as the state space, One may note that an
infinite number of state variable sets may be chosen to represent the same
system, Probably the simplest set of sta.e space variabl~s is the set of
phase space variables (Sec, 2.3).

To assist in the design and analysis of nonlinear systems a standard
form for the differential equations and the system block diagram (if appli-
cable) is used in terms of variatbles that are not necessarily those of the
physical system. The term "canonic form" is used frequently and inter-
changeably with the term "standard form", It implies one of several of the
simplest and most significant forms to which general equations may be
brought without loss of generality. The form is mathematically convenient
and the advantages of such a form out-weigh the advantages of retaining
the system physical variables, It is often convenient, in fact, to write
the equations of any system, linear or nonlinear, of high or of low order,
in such 2 ‘anonical form.

The principal characteristic associated with systems in canonical
form is that the different variables are 'separated", i.e. each of the n
first order differential equations contains only one variable, or if this
is not possible, some may contain two variables,

A particular form of the system variables may be chosen, therefore,
so that the system equations in terms of these variables will reduce to the
gtandard or canonical form., The new variables, (yl,....yn) associated with
the cancnical form of the system equations, are related by a linear trans-

formution to the system physical va:riables (xl, X, ...xh) such that:
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X-l-Pllyl"'PlZyzocao'ooonoplnyn

. } (2.1)

x!l-Pnlyl+Pn2y2'°""""Pnr)yn

o

or in matrix notation (Pipes [19], Chapter 4)
{x} = [P}{r} (2.2)
or
[} - B (2.3)
where
[P] = a square nxn matrix with elements Pij
[2]'1 = inverse of EP]
{y}-- a nxl matrix with elements y;
{x} = a nxl matrix with elements xy
The theory of linear transformations indicates that the basic properties of
the system (e.g. the characteristic roots or eigenvalues of the system linear
portion) are identical in either set of variables [1], p. 89).
In the language of a positional control system, one new wvariable could

be defined in the form:

¥y, = Px + Qv + Ba where x * porition (2.4)
v = velocity
a = acceleration
P,Q,R = constants

This example indicates that the physical meaning of the new variables usually
is obscure, The mathematical simplification that results is, however, of
considerable importance.

With the physical meaning of the new variables obscure, one can, with

very little further effort, consider them to be measured in Euclidean n--space
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along a set of n mutually perpendicular axes., We have, therefore, the

vector:

{5} - " Ny, + Y24y, * eee *'xn“yn (2,5)
<72

e

where the ayn are unit vectors defining the axes in n-space. This vector
in n-space describes the state of the system completely.

Thers are an infinite number of square matrices {P] that will perform
a linear transformation on the physical variables, XjeseeX,e The choice of
[P] is critical, therefore, in that it defines the canonical form in which
the system squations are wriiten,

The procedure that can be followed to select the matrix {P] will be
described by using a particular example, Consider the closed-loop system
with separable nonlinearity as shown in Figure 2.1, It is assumed that the
differential equations for the actual system have been written and expressed
in the form shown in this figure., From this form the following relations
can be written:

El(S) = Rl(s) - Xl(S) (296)

X, (s) 1
U(s) s(s +1) (s + 2)

(2.7)

which when combined and transformed to the time domain give:

e, 3%, 2de, Br 3d%r  20r (2.8
3+ 2"+ ”‘(-—l)u+-—3+—-—2-+—-— -8)
@’ dat® dt at”  at dt
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ReTE] 7 | Uls) | X(s)
_;\t | s(s+1){s+2)

Figure 2,1
The Conventional Block Diagram of a Closed Ioop
System with a Separable Nonlinearity (top)

and Equivalent Block Diagram (bottem)
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For a given input r(t), the quantity d&3r R 349y , 2dr is known
dt dtz dt

and will be abbreviated f(t).

New variables are now introduced,
de de

1 and e3 = _&2_ (2.9)

2w

so that equation 2.8 can be re-written:

Tk = (0) oy + (Lo + (0)ez+(0)u + (0)r

g‘:’g = (0) ey + (0)e, + (1)03+(0)u + (0)f (2.10)

de
(—{g = (0) Cl + (-2)32+('3)°3+(-1)u + (l)f
or

0 - A
rel 0 1 0 le 0 0 (2.11)

<;2> = |10 O 1 <02$~ +< 0ot 4407'

; 0 =2 = e -1 £
L.3.J — i _3_} - L/

which in matrix notation becomes:

{é} - (A ¢+ [Blw ¢+ (¢ (2.12)
Any systems which are linear in the sense that the elements being controlled
are linear and where the steering function, u(t), enters linearly as a function
of time can be reduced to a similar form. In this example the [A] mavrix,
the system matrix, has elements that are constants because the linear portion
of the system had constant coefficents, If the linear portion of the system
had been time varying the matrix elements would have been time varying. In

general the [B] matrix would be nxr and the {u} vector of dimension r; in




this example r = 1,
It is emphasized that while any system will reduce to the form of
equation (2,12) the details of the equation are not unique for a given

system, If Figure 2,1 is rearranged as in Figure 2.2 equation (2,11)

becomess
) - 9 [ ]
1 - '
) 0-1 0 ) 0 g
. - - 1 > <
4e5> 0-1 1 <e2> + <07 u + 0> (2.13)
el 0 0 -2 e! 1 0
L.BJ - - LBJ bj bJ

where g = %% o This equation obviously has the same form as equation
(2.,11) but differs in detail.,

Thus far the variables used are close to the physical variables,
though they may not be available directly in the system., Should the
system have zero input the equations can be written directly in terms of
the output and its derivatives, Xyee+eX,e Returning to Figure 1 and set-

ting r(t) = 0, the following equation can be derived to replace equation

(2,11).
(. [ i ~ ~ ™
S%pe =0 0 Il + x> + 0 u (2.14)
bx.BJ _9 -2 TZ :ga :lJ

or
& -m - B (2.15)
The details of equation (2,14) are, of course, not unique either,

The nsw variables {y} agsociated with the state space to be used and

related to the existing variables {2} or {é} by equations (2.7) and (2,8}




- 18 -

(s+2)

E, [(s+h |E, | s

ft

~

Figure 2.2

The System of Figure 2.1 Redrawn
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must now be found. The form of the matrix [P] must be determined on the
basis that the equations will transform into a form that is mathematically
convenient, There are a number of techniques available that wiil yield

the elements of this matrix, Other methods yield, directly, the system
impulse response matrix [H] which will be used and defined later in this
section., The methods are, for example: The classical method of separation
of variables ([19], Chapter 4, Section 20): The general solution by La-
granges method of variation of parameters which )ields the [H] matrix
directly (La Salle [20], Section 2), (Bellman [21], Chapter 10, Section 12):
The method reported by Kalman [22]: Lur'e's canorical form and the psuedo
canonical form (23 Chapter 2): Solution in terms of the Jordan canonical
form (Kaplan [24], p. 289): A summary and variations on several methods by
Kurzweil [25].

The example system chosen, described by equations (2.11) and (2.1%4),
is characterized by the fact that the linear portion has real, distinct
poles, i,e, the system matrix [A] has real, distinct eigenvalues given by
the sclution of the equation l[A] - )\[I]I = 0 ([1] p. 88). The method to
use in the determination of the matrix [P] depends, as is described in the
above mentioned references, on the form of the system differential equations.
In this case, the example of equations (2.11) and (2.,14), the classical
method can be used.

The solution of the equation l[A] —:}[I]I = 0 ylelds the three values
of A: >\l-0, >\2--land >\3--—2.

The solution of the matrix equation:

[4 - 1] {Pi} =0 (2.16)
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Pil

where the vector {Pi} = Tpi2 -

P
is an eigenvector associated with the eigenvalne )\i fori =1, 2 and 3
will give the three columns of the matrix [P].

With i =1, A = O gives

P12=0

P13 =0 (2.17)
-2P12 - 3P13 =0

This yields

() - o

where a is an arbitrary real number.

Then i = 2, >\2 = =] gives
Pag *+ Pp3 =0 (2.18)
-2 Pyy =2 P23 =0
This yields
\
b
{7} =br
b

J
where b 1s an arbitrary real number,

Then 1 = 3, >\3 = -2 glves

2P, + P.. =0 (2,19)

32 33
~2P35 ~ 1P33 = 0
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This yields

c/b
{Py} =-c/2

where ¢ is an arbitrary rea. number,

The matrix is therefore given below together with the inverse matrix:

a b c/k] 1/a %‘; %—;
[P] = lo b /2 [PJ - Jo -2 ap
0O b ¢ | 0 2/c  -2/¢]

Substituting the transformation (é} - [PJ {i} into equation (2,12)

(G} - S B - (3
S G -EEE e - R (2.20)
ey s WE s e

For the example Lﬁq can now be calculated easily as:
0O 0 O©
%A% = [0 -1 0] which is independent of the constants a, b, and c,
0 0 =2

and choosing for convenience a = - %, b =1 and ¢ = 2 then:
4

1 [-£
[W] = S1p ana [P {d -[q] {5} - {-f

r

1 -{

.

In terms of the new variables, the canonic state variables {é}, equation

(2.11) can be written:




R S S RSV N

. (
|y jo 0 o] In 1 -t 1
~ Jyz r i 0 -l 0 Yar ¢ {lpus+ <ot (2,21)
y 0 0 =2 1 -t
3] ¢ ~

This is a canonical form for the original equation which is convenient
mathematically as the variables are separated and the constants have been
reduced to unity,

Consider a component equation of the last form of equation (2,20):

vie Ny e S Wpme v > Qufy (2.22)
T % 3 -

This equation is integrable if the functions uy and f; are real and measure-

able and if the initjal condition vector {y(o)} is known,
Multiply (2,21) by oMY then;

d. (yio-'\"it) - o Mt z W vy + 0" Mt 2 Q 4Ly (2,23)
E k J .
and

At Mt T
71'01{7(0)}¢d1°f - 1 kaik“k‘”:’

Y T :
+ o)‘it[f 1 quijfjdt (2.24)

or, returning to matrix notation, the general solution iss

-

+ -~ - - - ‘
(7} - [o)r0) + [o] fo (0] [ (8){} et + [o] [: CRORERS
(2.25)
The matrix [G] is called the "system impulse response matrix" and is defined:



-23 -

[GJ'/’-[A]t - [1] + [A)t +_[’_\li_s_2_ ....... oo

24 (2.26)

for linear systems in canonical form,

Transform equation (2,24) back to the original variables using {):} - [P]'l{-}:
[ (e} - [allo) o) [olf (o] [#] T} e«
(6] é t[G]-l[P]-l{ﬂdt . (2.27)

and multiply by [P] and introduce [PJ-I[P] into the integral terms:
{e} ~[F][G][P]-l{e(0)} . [P][G][P]-lof t"[?][c;]"l[r’].)"[a]{u} at +
QDAL ORORGE: (2.26)

" Now writing [H] = [P][a][p}-l and therefore

-1 -1 =1
(k] = [p){a] [F] (2.29)
equition (2,29) becomess

{3 - (oo} » Lo (I Bleker 0] 003 e (2.30)

The matri;c [H] is now the system dimpulse response matrix in terms of the
original variables €j1....06n and is defined in terms of the system matrix [A]t

[H] } e[»A]t o [1] + (4] + L;q:_t_z_ ceceve (2,31)

A system impulse response matrix [H] can always be obtained from
knowledgs of the system matrix [A]. The system matrix [A] cannot always
be diapgonalized, to yleld the matrix [A] s however, unless the eigenvalues
ars real, and distinct. The matrix [A] can always bs put into the Jbrdaﬁ
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canonical form, using a suitable transformation ([24)}, p. 287) ([21],
P. 191) and the resulting equations in terms of canonic state variables
can be integrated,

Returning to the example of this section for a moment and writing
equation (2.21) in component form gives the three equations:

yp = @y +u-~-f¢

¥, = (Fly, *u-~of (2.32)

y3 = (—2)y3 tu=-1f

and Laplace transforming
sY; - (0)f, =U-~-F
st, -(-1)Y, = U - F (2.33)

3Y3 u(-2)Y3 =U~F

The block diagram of the equations @,33)is drawn in Figure 2.3,
The fact that the variables have been "separated! can be seen clearly by
compuring Fig. 2,3 with the original block diagram (Fig. 2.1),

The systems to be discussed in the remainder of this volume will

frequently be expressed in terms of canonic state variables,
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Figure 2.3

The System of Figure 2,1 Redrawn in

Terms of the Canonic State Variables
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2.5 The Second Method of Liapunov

The Second (Direct) Method Of Iiapunov (SML) is theoretically the
most general available method for stability analysis of nonlinear sys-
tems. A detailed mathematical discussion of the SML is contained in the
books by Malkdin [25), Zubov [26], Hahn [27] and in various papers, notably
those by Kalman and Bertram [28]) and La Salle [7]. An introductory treat-
ment of the SML and some of its engineering applications are contained in
[29] (Boston Workshop on the SML). Technical Report TR-61-6 of this con-
tract [30] deals with the engineering applications of Liapunov's second
method,

Three major limitations of the SML in the analysis of autonomous
nonlinear physical systems are presently:

1, There are no known straight-forward procedures of construct-
ing ILiapunov functions for the general class of nonlinear
autonomous systems, Ones success depends largely upon in-
tuition and experience,

2. The known liapunov functions for special types of nonlinear
systems yield sufficient but not necessary conditions for
stability.

3. The ML is, at the present state of the art, not directly
applicable to systems with limit cycles, no matter how small
and insignificant the limit cycle oscillations may be,

A survey of the most widely applicable methods of constructing Liapunov
functions, including some results of research at Purdue, is contained in
Technical Report TR-61-6 of this prcject [30]. Many autonomous systems con-

taining nonlinear gain elements can be analyzed successfully by the SML by
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means of the canonic transformations of Lur'e [31], Letov [32] and the
pseudo-canonic transformations developed at Purdue [35]. Attempts have
recently been reported to analyze, by the SML, the stability of relay
(switched) systems (Alimov, [33]) and systems with time delay (trans-
portation lag), (Razumikin, [34}).

The failure of the SML to yield necessary condi’ions for stability
is frequently the result of its inability tc predict limit cycle os-
cillations. Some progress in extending the applicability of the SML
to systems containing limit cycles has been reported by Zubov [26] and
La Salle [7]. Rekasius and 3zego developed a procedure whereby one is
able to find a closed, bounded region in the state space in which the
limit cycle iz confined, without the need for exact solution of the
limit cycle [35].

Hence the present day practical limitations in the applicability of
the SML in stability analysis of autonomous nonlinear systems are gradually
diminishing. It appears that continued research efforts will make the SML

a very practical and powerful tool for the stability analysis of autonom~

ous nonlinear systems,
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CHAPTER 3

STABILITY OF NON-AUTONOMOUS SYSTEMS

3,1 Introduction

Despite the fact that autonomous and nonautonomous systems have
been defined precisely in Chapter 1 of this volume, it will be worth-
while to review quickly those definitions and discuss their applica~
bility in this chapter. The term "autonomous" refers to a free (un-
forced) time invariant system whereas the term "nonautonomous! refers
to a time invariant (stationary) system subjected to inputs (forced
system) or to time variable parameter (nonstationary) systems irre-
spective of whether they are forced or not. In this chapter a
distinction between unforced and forced will be made instead of a
distinction between autonomous and nonautonomous systems.,

It will suffice to mention at this point that the problem of
determining the stability of a nonstationary nonlinear forced system
should be relegated intc the backgroundguntil the problem of obtaining
the stability information of a stationary, nonlinear forced system is
solved,

Considerable effort has been expended by various researchers,
particularly by mathematicians investigating the stability theory of
differential equations, to obtain methods of determining the stability
of unforced systems. In general, an unforced system is a fiction which
does not exist in practice, Every control system is forced, either due
to inputs or disturbances or both,

One possible reason for the existence and continuing increase of the

vast amount of literature dealing with the stability of nonlinear unforced
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systems by technical journals may be due to the fact that most engineers
still think of nonlinear systems in terms of analogous linear time-
invariant systems. It is a fairly common practice to try to extend
familiar concepts applicable to special cases to more general cases,
Unfortunately, this method often leads nowhere. This is evidenced, for
example, by the tremendous though essentially unsuccessful efforts that
have been made to extend the use of the familiar Laplace and Fourier
transforms to analyze linear ‘ime variable parameter systems [23].

The stability characteristics of a linear system are the same
irrespective of whethar there are any inputs to the system or not. Hence
it is common practice while studying the stability of linear gsystems to
consider only the unforced case, There is considerable justification in
adopting this procedure since the stability of both the forced and un-
forced systems are simultaneously determined.

A practicing control engineer has very little use for methods which
yield stability information for unforced systems only, since every actual
control system is governed by a differential equation with a forecing
function., Unfortunately, most methods that are available at the present
to investigate the stability of nonlinear systems seem to be applicable
only to the unforced case. Even a regulator is not an unforced system
since, despite the fact that the input is a constant and hence the devia-
tions of the input from a steady state value are zero, the output and
load disturbances make the system forced.

The last paragraph should not be interpreted to mean that the stability
of the unforced system is unimportant. It is quite possible, however, that
an unstable (in the sense that limit cycles of undesirable amplitudes might

exist in the system) unforced system may become stable (in the sense that
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the limit cycle may be reduced in amplitude cr quenched altogether) when
subjected to inputs. A special case of this occurrence is the phenomenon
of signal stabilization, discussed later, However, it is also quite li':ely
that for some period of time the system may be exposed to constant inputs
or load disturbances. In this case the system is mathematically equivalent
to an unforced system. Hence it is necessary to impose restrictions on the
staebility characteristics of the unforced system, The comments in the last
paragraph apply to methods which are useful for investigating unforced

systems only and not to the unforced systems,

The nonexistence of suitable methods for investigating the stability
of forced nonlinear systems is further complicated by the very concept of
stability for these systems, The familiar concept of stability which is
straightforward and intuitively easy to understand in the case of linear
time invariant systems takes on a more subtle and difficult aspect in the
case of nonlinear autonomous systems in general and nonlinear nonautonamous
systems in particular, Antosiewics [36] defines several distinctiy differ-
ent types of stability for nonlinear systems,

Considerables research is warranted before any conclusions may be drawn
regarding methods of investigating stability of forced nonlinear systems,
One general method which is capable of further extension and two special
inter-related methods useful for investigating the stabilitv of certain
specific stationary nonlinear forced systems are considered in this section.
Needless to say, the philosophy of presentation of this section may seem
to have overtones of pessimism because of the present state of ths art of

nonlinear systems in general and nonlinear forced systems in particular.
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3.2 The Second Method of Liapunov

While the SML still is, theoretically, the most general available
method for stability analysis of unforced nonlinear systems, its practical
application is still in its infancy despite the fact that several special
techniques are available for specific nonlinear unforced systems. To em-
phasize the enormous difficulties encountered in stability analysis of
unforced nonlinear systems, it is sufficient to note that even the problem
of linear time-varying systems still awaits its solution,

As pointed out earlier additional difficulties encountered in the
application of the SML to forced systems are due to a number of distinctly
different types of stability which manifest themselves only in nonautonom-
ous systems., Consequently the theorems of the SML of stability and in-
stability take on different forms, depending upon the type of stability
which is to be proved, Many stability and instability theorems for un-
forced systems, stationary and nonstationary, based upon the Ml are
contained in the books by Hahn [21], Zubov [26], Malkin [25] and in the
papers of Antosiewicz [36] and Kalman atd Bertram [28]. Very little is
known, however, at the present time of how to construct Liapunov functions
for nonautoncmous systems, A few studies of stability of special cases of
time-varying parameter systems are scattered in the periodical literature,
primarily in various issues of Automatika i Telemekanika {Automation and
Remote Control) and Prikladnaja Matematika e Mekanika, (P.M.M.).

¥hile there is little hope yet for a major breakthrough in the practi-
cal application of the SML and the methods of construction of Liapunov
functions for the general case of forced nonlinear system, some special

cases may in the near future become practically managable., These are,
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for example,the stability of linear time varying systems (Szego, [37)),
and the analysis of systems with periodically varying coefficients, etc.
Despite the fact that the solution of this problem does not solve the
problem of determining the stability of nonlinear forced systems, it is
hoped that it will provide some insight into the latter problem.

Very little is known about the problem of the stability of a general
nonlinear system subjiected to inputs from the point of view of the SML.
However it is sometimes possible to invoke Massera's theorem [38] which,
in essence, states that a sufficient condition for the total stability
of a forced nonlinear system (stationary or nonstationary) is that the un-
forced system be uniformly asymptotically stable, Massera's theorem is
still not very useful for nonstationary nonlinear systems since, as pointed
out earlier, the application of the SML even to nonstationary linear sys-
tems is not easy, However, Massera's theorem may have some use in the case
of a stationary nonlinear system since certain methods for applying the
SML to certain special classes of nonlinear systems are available in the
literature, Notice, however, that the use of Massera'!s theorem imposes
severe restrictions on the stability characteristics of the unforced sys-
tem, Uniform asymptotic stability may be a sufficient but not necessary
condition for acceptance of an engineering system., This condition ex-
cludes, for example all systems which may possess small limit cycles for
some specific values of the system parameters,

At the present state of the art the SML for forced nonlinear systems
is a fruitful area of research but has so far yielded very little of

practical importance,
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3.3 Signal Stabilization

The stability characteristics of a linear system are unaffected by
the inputs to the system., This however is not true, in general, for
nonlinear systems. The possibility of changing the stability character-
istics with different inputs is the property which allows "signal stabili-
zation",

Feedback Control Systems in a state of self sustained oscillations
(limit cycle operation) resulting in output hunt may often be stabilized
by the introduction of an external signal of a sufficiently high frequency
at a convenient point in the loop. This phenomenon is termed "signal
stabilization" by Oldenburger [39]. Here a system is said to be stabilized
if the amplitude of the output hunt is reduced below a certain prescribed
value, A first attempt to explain this phenomenon when the waveform of
the "stabilizing signal" is sinusoidal is due to Oldenburger and Iiu [40].
The theory developed by Olderburger and Liu is quite different from the
one advanced by Minorsky [41], who treated the use of a signal to excite or
quench the hunt (self oscillation) of a physical system described by a
particular type of second order differential equation. Oldenburger and
Nakada [ﬁg] extend the theory of signal stabilization to a rather general
class of nonlinear systems with a triangular waveform stabilizing signal.
Sridhar and Oldenburger [AB], [hh] generalize the theory of signal stabili-
zation and extend it to consider random stabilizing signals., They also
establish various criteria to obtain stability information for a particular
class of nonlinear systems, Oldenburger and Boyer [L45] generalize the
theory developed in reference [40] for sinusoidal stabilizing signals.

Signal stabilization theory as developed in references [40] and [4]]

to [46] 2ppears to hinge on the fact that the frequency of every componert
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in the stabilizing signal is large compared to the significant frequencies
in the system, This assumption is consistent with the practical use of

signal stabilization for decreasing the output hunt in a self-oscillating

-- system, since it is desired that neither the system hunt nor the stabiliz-

ing signal be present to any appreciable degree at the output. However, |
the theory developed in reference (Lh] may easily be extended to cover the
case when the input spectrum has low frequency comoonents,

‘Recently Gibson and Sridhar [L4§] have proposed a.new method for con-
sidering certain specific nonlinear systems with sinusoidal inputs without
putting any restrictions on the frequency of the input. This method will
be discussed further in the next sectionm.

It is felt that the theory of signal stabilization provides a better

‘insight into the problem of understanding the stability characteristics of

a particular class of forced nonlinear systems. It should be pointed out
that it may be possible to interpret a signal stabilized nonlinear system
as either a forced or unforced system, depending on whether the stabiliz-
ing signal generator is included vithin the "black box" representing the

nonlinear system or not,

3.4 The Dual Input Describing Function

The describing function (D.F.) is a very useful approximation in the

analysis of ‘a certain class of nonlinear systems., It applies difectly te

systems such as those shown in Pig., 3.1, It is based on the method of
harmonic balance of Kryloff and Bogoliuboff [8] and, as discussed above,
was applied to control systems by Goldfarb [9]. Popov [47] has an in-
teresting discussion of the method of harmonic balance itself as it applies

to control systems, In all of this work the system under analysis is un-
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forced., It seams a direct step, however, to apply the conventional D.F.
to forced systems,

A number of schemes have been proposed for obtaining the closed
lnop frequency response of a nonlinear system, for example, by direct
extension of the conventional D.F. . Among these methods, those of
Levinson [15], Thaler [48] and Ogata [49] are well known. Hill [16] has
proposed an ingenious use of the Nichols chart which is probably the most
convenient of all of these techniques., Kochenburger [10] in his original
paper discussed the extension of M peak to the D.F. plot and presumes
that one can read off the amplitude of the resonant peak of a sinusoidally
driven nonlinear system from the D.F. plot just as one dces from the Ny-
quist plot for a linear system., Prince [50] has propesed a modification
of the conventional D.F. to obtain th2 closed loop response of a perfect
relay system. However the Prince D.F. does not appear to be of wide
applicability,

The error in all of the work cited above lies in the fact that the
conventional D.F. analysis postulates a single sinusoidal input to the
nonlinear elements, Naturally the frequency chcsen will be that of the
input r. Now if the closed loop system is (uniformly) asymptotically
stable, then with an input signal, this analysis is ag valid as the con-~
ventional D.F. analysis of unferced systems, This is so because in fact
there will be the single sinusoidal signal at e, for which the convention-
al D.F. analysis is designer,

Suppose, however, that the control system is not asymptotically stable
in the presence of the input r. Then the conventional D.F, is in error

because there is . longer a single sinusoidal signal at e, It is a well
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known fact that in a nonlinear system asymptotic stability or instability
of the unforced case doe 10t imply either stability or instability of the

forced system. Therefore it can be concluded that it is improper tc employ

conventional D.F. for closed loop response calculations unless the stability

of the driven system has been established by other means. This fact is

apparently not appreciated by a significant segment of control engineers.

A number of dual input describing functions (DIDF) nave been proposed.
However, they may be applied to closed loop frequency response calculations
only under certain conditions that do not usually hold., West, Douce and
ILivesly [}1] have proposed a DIDF that is valid only if the two sinusoidal
components at the input to the nonlinearity are related by an integer. This
DIDF is rather clumsy to manipulate, but it can be used to detect subharmonic
response, It cannot be used to examine the general possibility of asynchron-
ous oscillations induced by the input in general, however, Oldenburger and
ooyer {;5] have proposed a DIDF that is more convenient to mamnipulate, but
that is valid only if the two sinz waves at the input to the nonlinearity
are widely separated in frequency. Thus this approach is useless within
the bandpass of the system., Sridhar and Oldenburger Ref [?3],[LA] have
developed a DIDF in which one of the signals at e is a stationary, Gaussian,
random function. It appears that this function may be employed to develop
the response of a nonlinear system to a random input. This problem has been
considered by Booton 52 , but of course the same objection a *o previous
work with sine waves applies to this: it completely ignores the stability
problem, Gibson and Sridhar [bé} have applied a general DIDF devsloped by
Sridhar [3% to the problem of closed loop frequency response and interest-

ing results have been obtained. It is shown in reference [Lé] that stabls
L
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unforced systems may become unstable under certain driving functions and
that alse the converse is true.

1t is apparent that the DIDF must be developed until it is as simple
and reliable for forced systems as the conventional DF is for unforced
systems if it is to be useful for the specification of automatic control
systems for aero space vehicles, W%With the present rapid rate of research

progress in this area, it is possible that this will occur within the

next few years,

3.5 Conclusions

It is hoped that this chapter will throw some light onto the magni-
tude of the problem involved in considering the stability of forced sys-
tems, Considerable research on the ri‘oblem of determining practical methods
for obtaining the stability of forced nonlinear systems must bte conducted be-~
fore any significeni progress can be reported in this area, Even the dis-
covery of some approximate methods for determiming the stibility of certain
classes of forzed nonlinear systems, such as the describing function method
for a special class of unforced nonlinear systems, would be a definite
contribution, It does not appear at the moment that a unified method of
stability analysis applicable to all forced nonlinear systems will be dis-
covered in the foreseeable future, if at all. This last statement appears
to be reasonable in the light of the trend experienced in the field of non-
linear mechanics; where a number of special methods for obtaining stability
anG other properties of a small number of special classes of systems is avail-
able, This same approach of trying to obtain special methods for different
types of ferced nonlinear conirel systems is being adopted at the present,

Despite the fact that most specifications that might eventually be
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recommended for nonlinear systems may involve the response of the system
to specific inputs, it is felt that the problem of stability of the forced
system is intimately related to its response to inputs., Thus, for example,
it is possible to have a "stability specification" which states that a
limit cycle amplitude larger then a certain value cannot be tolerated.

The specified amplitude, of course, will depend on the applications.

It is felt that with the present state of the art, mest of the research
effort for determining the stability of forced nonlinear systems should be
concentrated on obtaining methods for determining this information for
stationary systems. It is hoped that solutions to this problem will pave
the way for better understanding of the problem and eventual solution of

the stability of forced nonstationary systems,
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CHAPTER IV

THE RESPONSE OF AUTONMOUS SYSTEMS

L,1 Introduction

A possible approach to the problem of specifications for nonlinear
systems is the construction of a mathematical model which is representa-
tive of the best system that can be devised for a given task. This sys-
tem, which is optinnm with respect to certain specific requirements, and
its performance cam be used as the upper bound on physical, but not
necessarily optimum, systems,

The question of which model is optimum for a given task must include,
in general, consideration of such qualities as reliability, economy and
performance, to quote three examples., In addition, one engineers' optimum
may well differ from another engineers! optimum within a given task,

The problem has been formulated in the literature (Bellman [54], p. 22),
(Merriam [55], p. 267), (Lee [56]) in terms of a classical problem in the
calculus of variations (Forsyth [57], Chapter 1), Here an index of per-
formance, J(x,y), is to be minimized (or maxdimized) by choice of the
function y:

T
r

J(x,y) = J k(x, y)dt (4-1)
°

where the vector {;} represents the system state variables

the vector {y} is the system steering function
and the time T is related to the termination of the control problem,
The fumction k is chosen to include the considerations mentioned above

and the constraints of a given problem. In practice the choice of thie
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function usually involves a compromise between an accurate evaluatiosn of
the physical process and a more tractable mathematical problem,

Solution for the function y 2s a function of time then defines an
optimum policy for the system, should such a policy exist, by means of
which optimum performance is achieved. General problems of this nature
are frequently insolvable,

The purpose of this chapter will be to examine, therefore, a speciali-
zatior. within the general problem which has received attention in the litera-
ture. The class of system to be considered are those that are autonomous
([1], p. 32) and where y is to be determined so that the disturbed response
is time optirmm.,

The study of this restricted class of systems together with the re-
stricted nature of the performance index is warranted as it permits ex-
ploration of the techniques useful with these rather difficult problems.
The chapter reflects the state of the art and indicates that the approach

has much promise, but that there is the need for further work in this area.

5,2 Time Optimum Switched Systems

Engineers always try to build the best system possible from every
point of view, e.g., reliability, econamy and performance, Often one system
quality must be sacrificed for another, and the resulting system is then the
best that can be built, i.e., optimum, after having taken all factors inte
consideration, A specialization within this optimum concept is the perform-
ance specification of being "time optimum", The question to be answered
here is how should a system be built so that it will achieve its objectives
in minimum time,

Some time ago engineers began to reason that perhaps the system that
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could uss the masc mum power available, all of the time, would be time |
optimm, This idea is contrary to the concept of a linear system where
the maxinum power available is used only for one instant of time and a
lesser amount used at all other times, The intuitive conclusion at this
stage was that a relay system and a time optimum system were one and the
same thing,

A relay system is a nonlinear system with a fundamental preperty
that the nonlinearity, the relay, is separable from the linear portiom of
the system. The configuration is like that of Figure 4.1l , rather than
the ].*Lnou- aystcn shown in Figure L.2, \

hrly attempts to analyse such systems were restricted to cases where
the linear portiom of the system had a relatively simple form, frequently

G(s) - —Enr G(s) -:(-1:1_5_)—
(Bogner [58]), (Oldenburger [59]), (Weiswander [60]), (Kahn [61] ).

Once the relay has beem included in the circuit the question arises,
when must it switch? If the phase plane is used (this representation is
applicable to the second order examples of the paragraph above), where de
the switching bou;-xdarioa Ue? |

The system showm in Figure 4.l will switch aleng a line that is the
ordinate axis, Figure 4,3, Here the objective would be to reduce the error
and the derivative of the error to zero., Variations of the switching
boundaries include linear switching, Figure L4.,, and parabolic switching,
Figure L.5. In sach of thess three diagrams there are several possibili-
tiea; for example, changing the switching to a different quadrant of the
phase plane, or interchanging the relay polarity.

With the introduction of the more ccqpltcatod switching boundary, an
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additional element must be added to the system, This element will have
the task of determining where the system variables are with respect to the
boundary and which polarity to feed to the relay., The element will be a
form of computer and the configuration becomes that of Figure 4.6 for the
system corresponding to Figure 4.4 or 4,5.

None of the systems mentioned yet could be called successful, however,
except in restrictive cases, For example the configuration of Figure 4.1
with the boundary of Figure 4.3 will switch many times before a region
near the origin is reached, and then it will oscillate about the origin
(1imit cycle). With the switching boundary of Figure L.4, the system will
only reach the vicinity of the origin from a discrete number of points on
each side of the boundary. From all other points the system will drive
toward one cf two points on the abcissa, on either side of the origin.

The points will correspond to the magnitude of the relay output, Neither
of these cases are time optimumn nor are they optimum in any sense,

The parabolic boundary of Figure 4.5 is time optimum for the special-
ized system with the linear portion described by G(s) = 1/32° The tech-
nique used to deduce this boundary ([58], p. 117) is not suitable for use
with other systems as it depends on the phase plane technique and the re-
stricted nature of the system considered.

The relay used has so far been considered ideal. No relay is ideal
and a number of authors have attempted to extend the techniques used with
these rather special systems and boundaries to allow for physical relay
characteristics such as deadvand and hysteresis [60], (I1zawa [61]).

It is to be noted that any physical system must have deadband in the

relay mechanism in order to deactivate the system when it reaches the origin.

/
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Alternatively the computing element, can be designed to allow the system o
operate linearly in a region near ths crigin. This is the dual-mode system
(McDonald [63)), (Bulund [64]), a simple example of which can be darived
from Figure L.4 as shown in Figure 4.7. The boundary of the linear region
of operation can take a number of forms and is left undefined in Figure
4,7 for this reason. Some such procedure of deactivation or restricted
linear operation is necessary with all practical systems,

It was suggested at this stage of the development of optimum switched
systems that the number of switchings needed for systems with real, distinct
roots, associated with the linear portion, is (n - 1), where n is the sys-
tem order (discussion to [60]), [5€].

The next development in the state of the art was the complete analysis
of a second order system, again with an ideal relay. The systems investi-

gated were those that could be described by equations of the form:

y +2fyey= 21 (4-2)
The investigators sought out every possible mode of operatiom and by
systomatic elimination converged on the optimum (Flugge - Lotz [65]),
(Bushaw [66]), (Tsein [67], p. 136). Sufficient thecrems and lemmas were
proven to substantiate tue elimination process and the optimum was proven
optimum. The results reported by Bushaw in his Ph.D. thesis [66] and re-
produced by Tsein [67] show, for example, that for the case where J=0
in equation (4,1) the switching boundiries for optimum time response are
portions of the circles associated with the system singular points in the
phase plane, centers in this case as in Figure 4.8.

It is fairly obvious that the tool whereby the results obtained so far

had been obtained is the phase plane method and the geometrical interpreta-
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tior pessible thers, Third order systea analysis has besn attempted on
the phase plane, or rather on two phase planss [54], (Chang [68]). The
method i3, however, rather cumbersome and for practical purposes the phase
plane is rastricted to second order systems. This limitation has led te
the use of a state space and state variables {described elsewhere in this
volume) and the use of more elegant mathematics.

Consider the cunfiguration shown in Figure 4.9 whieh is the forward
transfer function of the system to be examined. The nonlinearity is not
defined, as it is the variable to be used in the time optimization process,
It is, however, constrained tc be a real, measurable function of the input
variable m and bounded above and belew such that -1% lui(t)] €1, The form
of the linear portion of the system is not necessarily constrained to the
form shown in Figure 4.9. The ferm can vary considerably with the only re-
striction that the system equations can be written in matrix notation and
in canonical form as described elsewhsre in this volume (Chapter 2).

The system equations of this example are:

.
. ~ - M) ) )
x) 0 1 0 x3 0 Y
<xz> - |0 0 1 {x, > +<0> u + -{0? (4-3)
" 0 -2 = 1 4
LIBJ — 3~ _IBJ - J L..J

or: ([20] , equation 1)

& -ne-Ee - @ (14
Transforming from the physical variables {x} to the state variatles {y}\dth

the transformation, {X} is:

(3 = (4]} (4-5)
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where the matrix [H] is given by a selution of the mairix squations
[H] = [A][H] with iitial conditions [H(0)] = [1] . (4-6)
The matrix [H] is defined as the system impulse respomse matrix in

terms of the veriables (xj...x;) and may alse be determined as:

(1] - o1 (4-1)

wilere [A] is the system matrix.

The solution to equation (4~4) may now be determined by Lagranges
method of variation of parameters ([21], chapter 10, sectiom 12), Differ-
entiating (4~5) and substituting im (4-4)¢

(5 -6 - 46}
(- WEE - B + &

Conp&ring thess twe equations with the help of (4-6) one gets:

H){3} -[3l{a} + {2} (4-9)

Intcgrating, returning to the original variables and using the initial

(4-8)

condition vector {:-:(O} ,{ x} is found to bes

<

(e} - o) + () [0 Tal e+ (1)) (3 @@ G0

°
This ks the solution ef the system equations and can be found previded
equation (4~6) can be solved and the integratioms can be carried out. The
solution of equatiom (4-6) is unfortunately a difficult if not impossible
task in the general case. Whether or not these integrations can be per-
formed depends largely on the ferm ef {u(t)} » The restrictions already
placed upon the nonlimearity will, however; usually make the operation

possible,
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When the system under consideration is autonomous i.e. {r(ri}sso
the problem becomes that of reducing the vector {x(té} to the null vector.
Equivalently the system must "hit" the origin of the state space, From
equation (4~10) it can be seen that this situation will have been achieved

when:

_gx(O)} - /o']ju]“l[aj{u}dt - /:[r ] {ah} ar (4-11)

A number of things must now be proven. For example it must be shown that
there extsts a t > O for which the equation (4-11) is satisfied for any u(t).
Then it must be demonstrated that of all the different values of t  that will
satisfy this equation one of them, t¥, will be minimized by a suitable choice
of u(t). Finally the form of u(t) must be determined.

The various points to be proven have been examined rigorously in the
literature [20] , (Bellman [69]), (Kurzweil [70]) and the proofs, which are
reasonably lengthy and difficult, will not be reproduced here, The proofs
indicate, however, that a vector ?}} must be found such that the "dot"
product below is maximized.

{7} - [r]{x] (4-12)

This is the same as maximizing:

(9} B (1)
It is shown in the literature referenced above that this maximum exists
and will be achieved when:
{u} = oo {4]'[Y] (4-11)
i.e. ‘ui| = 2
The procedure described above can be demonstrated by means of the following
example,
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Consider the case of a linear escillater with the circuit configura-
tion shown in Figure 4.10. This particular example is chesen as it is one
dfecussed by Bushaw ([66], p. 42). His detailed discussion leads te the
cerrect switchimg beundaries (r.f[lﬂ, p+4i2) but with rather more effert
than is required using the methed described abeve.

The system equatiens in matrix form are:

: {- ] J-—L JE{L

(1 e\

- - \=e) )
& A | )

and it is kmewn that fer time eptimum response the functiom u cam taks on

the values of +1 er -1, = erder te obtaim the matrix selutiem the methed

of Lagrange can best be applied here. The selution te the matrix equation
below must be foumd first:

(8] ~ [A) [§] wate [uco] - [1] (416
which ir this case becomes:

° . B -]

Hy3 Hyz Hyp  Hpp

oy Hag 11 | (4-17)

This matrix equatien yields feur second erder differential equatioms which
can be solved with the initial conditions te give:

Hyy = cest, Hy, = sint Hyp = ~siné  axd sz = cost

N [i] - '[cost aint]

~-sint cest

therefere .
cost  ~sint - -sint
-1 ’ ’ and [Y] = [H] [B] = ’ (4-19)
[H] - cest
sint cest

g
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and {7}'[!] = -4, sint +¥2 cost | | (-20)
which can also be writtent

{7}1[¥] = Acos(t +d) A and d are functions o ¥,, Y, (4=21)
So it is seen that:

u = +1 when Acos(t +d) > 0
and u = -1 vhen Aces(t +d) > 0 ‘ - (k=22)
md it 1: immsdiately apparent that the rolq must switch every 7/ seconds.

It the system is te reach the origin of the state space the final solu-
tien trajectory must go through the origin, There will be twe such final
trajectories, one for each of the two cases, u = +1 and u = -1, Further-
more, since these trajecteries are final trajectories, the system mst
"switch onto” them sooner or later and they are therefore part of the sys-
tem switching boundary,

To find the final trajectories a technique suggested by La Salle [ 20]
and others can be used. Let T = =t in the system equations, squation (4-15),

‘and solve the equations with the initial conditions (0,0), i.e. let time

run backwards away frem the final point, the origin, Allowing time to run
backwards for 7/ seconds will gonerate that pertion of the awitching bound-
ary through the origin., With this substitution equation (4-15) becomes in
componélnt form:

-?::1— "= (4-23)

When u = +1 we get
xl(T) =1 - cosT
/ X,(T) = = sinT or sliminating T (x.l --].)2 + 122 -] (4=24)



When u = -1 we get

x1(T) = =1 + cos?

x2(T) = sin? | or eliminating T (xy + 1)2 + 122 -1 (L~-25)
Considering the signs in the parametric equatioms and allowing T to increase
to 77 seconds, two semi-circles result as shown in Figure L-11, The directien
of increasing t or decreasing T is toward the origin., Choosing an arbitrary
final switching point on this portion of the boundary, say at (1, -1) for
convenienc).'; the solution trajectory immediately prior to this final switch-
ing can be determined from the equations (4=23) with initial conditions
(1, ~1) and with u = =1, The result is: |

xl('r) = -1 +2cosT +8in T

xp(T) = 28inT - cosT or eliminating T (x; + 1.)2 + 122 = 5  (4=26)
This trajectory is drawn in dotted %lines on Figure 4,11, The parametric
equations again indicate the direction of increasing t (decreasing T), thus
showing that the portion of the state plane above the switching boundary
found so far corresponds to u = -1, and the portion below to u = +1, Allow-
ing time to ‘run backwards along the dotted trajectory for ‘/’f seconds deter- }
mines one point on the switching boundary to the left of the existing portion;
This point is labeled B in Figure 4.ll, Constructing trajectories from
different initial points on the known portions of the switching boundaries
thus will yield additional portions of the boundary. The complete picture
is clearly exactly that of Figure 4.8, It is to be observed that the compon-
ents of the maximizing vector (‘7} do not have to be found explicitly, but
rather the possible behavior of Equation (L-14) is observed and the position
of the boundaries is deduced from the zerc crossings of 17}'[!] o
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The method outlined in this section is a method that will lead to
gwitching boundaries which thus defines a time optimum policy from any
admi ssable starting point in the phase space, The method does allow for
solution of systems where the linear portion is described by a linear time
varying equation « The solution is only possible then in the restricted
cases when equation (4-6) can be solved.,

The boundaries of the example system and of any more complicated sys-
tem must be instrumented in the phase space., The position of the system
with respect to these boundaries must be determined continuously in order
that the relay can be switched to the correct polarity. There is z2lso the
additional problem that frequently not all the physical variables are
available from which the state variables must be calculated. In this
gituation a prediction or estimation of the missing variables must be
attempted (Kalman [71]).

The sequential procedure of boundary determination, boundary instru-
mentation, and the determination of system position via measurement or
estimation is a complicated task even for simple systems, In addition,
pre-determination of the optimm policy does not allow for unpredicted
changes or disturbances. The concept of a multistage decision process
(dynamic programming) (Bellman [72]) suggests that the nect3sary steps
mentioned above should be undertaken repetitively by on: computing element,
The system optimum policy would then be considered as the solution of a syn-
thesis problem that can be reviewed from moment to moment as the solution
proceeds., These latter ideas are discussed in more detail in the next

section.




L4+,3 The Synthesis Problem

A basic problem associated with switched systems is that of determining
the switching boundaries., These are the hyper-surfaces located in the sys-
tem state space where the system steering function must change sign in order
to adhere to the optimum policy.

The technique outlined and referenced in the last section will solve the
problem of finding the form of the steering function u as a function of time,
In the case of autonomous systems and for time optimum response it is shown
that:

u = sgn {E&'[Y] (4-27)
where the matrix [Y] is time dependent. In order that the system shall
satisfy this relation it is necessary, therefore, to determine the points in
the state space where the sign of the function changes. To find the hyper-
surfaces made up of all such points, the form of the steering functiony;, al-
ready known as a function of time, must be determined as a function of the
state variables, It is sometimes written that, the zero crossings of u, as
a function of time, must be mapped into the state space, This is the desired
situation, as it is assumed that the state variables can be constructed one
way or another [71] and hence are available to feed the computing elements of
Figures 4.6 and 4,10, The determination of the switching hyper-surfaces a.
functions of the state variables will be defined as the synthesis problem
and this part of the theory of optimm systems is considered as a problem
separate from the problem of determining the form of the function u as a2
function of time,

If the optimum policy can be determined with certainty ahead of time,

as was the case with the simple example concluding the last section, the
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computing element may construct and then monitor the system state variables,
The computing element will decide where the system solution is in the state
space with respect to the switching boundaries, and make a simpie decision
as to the optimum relay position as the soiution proceeds.

Instrumentation in these cases is possible in a number of ways, e.g.
two variables can be applied, one tc each of the deflection plates of a
calibrated oscilloscope, The tube face is then masked to match a switching
boundary and monitored by a photo-electric cell (Hopkin[73] ). Techniques
suitable in these cases can be campared with the technique of pre-program-
ming.

A more powerful apprcach to the problem exists, however, that can be
used to take care of the situation when the optimm policy is known initially.,
The approach will also take care of situations when the optimm policy may
well change as the solution proceeds., The approach is that known as dynamic
programming [72].

The title dynamic programming is a phrase coined to describe the pro-
cedures associated with the solution of a multi-stage decision process. The
procedure involves sampling the system position in the state space repeti-
ively., At 2ach sampling the computer makes a decision as to what the optimm
policy is at that time, For zxample, there are two choices available in the
case of a time optimum system with a single relay. The optimum policy de-
cided at one sampling time is pursued until the process is repeated at the
next sampling time,

Optimm systems defined in terms of their performance indicies that are
to be treated in this fashion must possess the basic property of being Marko-

vian, i.e., after any number of decisions, say k, the effect of the remaining
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N-k stages of the decision process upon the total return must depend only
upon the state of the system at the end of the k-th decision and the subse-
quent decisions ([54], p. 54). Systems that are Markovian in nature will
then perform in a manner that is optimum overall, even when the decisions
wre made repetitively as the solution proceeds. The Markovian property is
fortunately characteristic of most systems encountered.

It is to be observed that the past history of the sysztem need not be
considered in determining the future policy, and consequently such a proced-
ure will allow for unpredicted disturbances, etc.

Instrumentation of the computer element is clearly no longer possible
by simple means, In fact the suggested procedure has only become feasible
with the advent of high speed digital computers which inevitably perform
the computing task. There is still a finite computing time associated with
the decision process, of course, and that places a limitation on the sampling
frequency and in turn on the system performance,

An example of a method where the optimum policy is reviewed as the solu-
tion proceeds has been presented recently by Smith [74] and the technique
will be summarized here,

Equation (4-30), the solution equation for the state variables, is re-

produced here but with f(r) = O:

{x @) ~[6]{x0} + [ (t] [[ﬂ(t)]-l[s(tj fuct)} ar (4-28)

Allowing that in a time optimum problem the function u can only take on the
values plus or minus one and that this function will change sign according to
equation (4-27) at times t;, tseeeet, ;,T where 0<%y ... <T, equation (4-28)

can be written:
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If the set of n equations repressnted by the matrix notation are integrated,
the result will be n simultaneous, algebraic equations with the times
tieec0e.T as unknowns., The solution of simultaneous equations on a digital
computer is possible by means of weil kncwn techniques., Consequently two
values of T, say T* and T~ corresponding to the choice of sign outside the
bracket on the right hand side of Equation {4~29), can be calculated with
knowledge of the initial conditions. The computer can now make a decision
whether T"> T™ or T°> T", and can use the result of this decision to
activate the relay in the appropriate direction, This procedure can be
repeated continuously by sampiing the system at intervals to obtain new
initial conditions, i.e, the values of the state variables at the time of
sampling., The sampling frequency can be made as small (or as large) as is
desired, weighting the computing time against the system response time,

A number of other authors working with different forms of integral
type performance indicies have sketched melhods for the continuous sclution
of the synthesis problem. For example lee [56] indicates possible methods
for the continuous solution of minimm-energy, minimum~time and minimum-
error systems,

The results that are given by the authors indicate that the desired
response is possible with the techniques suggested. It is to be observed
that the performance is obtained at some expense for the amplifier of the

conventional system is replaced by a relay and a digitial computer§! This
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fact is not, however, of direct concern if the objective in reviewing these
methods is to determine the best possible system, for purposes of system
evaluation. The physical construction of an optimum system is a separate

problem which has been golved by one author, as described in this section.

L.4 Conclusions

The methods outlined in these sections depend to a large extent on the
form of the system and on the form of the optimum response desired. The
time optimum systems are those where the steering function is chosen to
minimize the upper limit of the integral in equation {4~1). At the present
state of the art much attention has been given to the time optimum problem.
The solutions that do exist, however, are restricted almost entirely te
systems of second order. The exception discussed in the last section used
the full capacity of a large digital computer to handle a fourth order sys-
tem. It is thus clear that for systems other than the simplest systems the
existing methods are far from economic and cannot be considered as practical
as yet,

The concept of using an optimm system as the upper bound on all systems
that are to fulfill a given task is not restricted to the time optimm case,
For example other optimm systems require that u be chosen with a fixed upper
limit on the integral to minimize (or maximize) the integral itself, Alter-
native methods that may lead to the solution of these problems must be sought.

It has been shown (Rozonoer [?5]) that all problems of this nature can
be interpreted as a problem of maxdmizing (or minimizing) a coordinate in the
state space, together with some constraints. For example if there is a sys~
tem described by n equations 23 written in equation (4~4) and the optimm

system is defined as a time optimmm system with the additional constraint:
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T
/F(x,u,?’) a7 < A (4-30)
o
one can define two new variables, X 41 and Xn+2° These variables would be
defined:
Xep = E i.e. X" 1
t
Xp4+2 -//. P(x,u,7)AT  i.e, X0 =Flx,u,t) (4-31)
o

The system equations can now be re-written in the form of equation (4=f) but
with n + 2 variables,

The requirement for the system to be optimum is now that the coordinate
X 41 1s to be minimized with the constraint that the coordinate xn+2(T) < A
.'stems of this type, where a coordinate or a linear combination of
coordinates must take on an extrems value, can be optimized by the Principle
of Pontryagin [?é] (with a unified procedure), While the Maximum Principle
of Pontryagin is in the hands of the applied mathematicians, at the present
state of the art, it is to be hoped that, with attention from qualified
engineers, it will be proven to be of great practical value in the design
of optimum automatic control systems,

In conclusion, it is remarked that the methods for the determination
and construction of the configuration necessary for an optimm system of
any sort are as yet in their infancy for anything but tne simplest systems,
The methods reported in this chapter, however, indicate that in many cases
unique optimm configurations exist in the mathematical sense of the word.
The techniques associated with the method of dynamic programming and/or
the Maximm Principle of Pontryagin seem to provide the paths along which

practical solutions will be found. This is an area in which there is a
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considerable interest from the enginsering world at the present time,
Further work will undobtedly prove to be of considerzble value for the

better evaluation and construction of autamatie control systems,
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CHAPTER V

THE RESPONSE OF FORCED NONLINEs4R SYSTEMS

5.1 Introduction

While the stability and response of autonomous nonlinear systems is
of considerable interest to the automatic control specialist and to a
nurber of applied mathematicians throughout the world simply for the sake
of the problem, the user of a control system could hardly be less interest-
ed. The unforced system is of no conceivable engineering use. For a
system to be of engineering interest it mst function properly over a
spacified range of inputs.

This report has considered the unforced system, not because of any
misapprehension that such systems are of any practical use, but rather
because such studies should lead to a b~tter understanding of the forced
system, It is hoped that the technirues used for forced systems may be
extended tc the analysis of unforced systems. Such extensions are not
easy of course, let us cite two examples of different kinds of problems
that arise., First, it has been shown above that the phase plane analysis
may be extended to an approximate analysis of a forced time-invariant
second order system., In this example the only difficulty arises from the
approximation required of the input and the increased labor required to
obtain the result., A second example however, will bring out a more basic
difficulty. In the discussion above on the DIDF it has been shown that
the use of the conventionai DF for obtaining closed loop frequency response
is fraught with danger. Examples can be given in which the conventioral

DF yields an apparently perfectly satisfactory closed loop frequency re-
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sponse for a system that is actually unstable. This is the second class of
problem, Not merely is the method of analysis slightly more cumbersome in
forced gystems, but rather it ylelds an incorrect answer.

Turn now to the problem of direct concern; the forced nonlinear system.
This research is concerned with the development of specifications for con-
trol systems. Clearly the AF is not interested in the detziled nonlineari-
ties involved in a particular system. The AF is interested in performance,
and the particular techniques involved in meeting the specifications must
remain in the design province., Thus it would seem improper for this group
to become involved in compiling a list of all possible nonlinearities and
gspecifications for them unless this were the sole method open. The approach
that appears of most validity would seem to be the establishment of the
optimum performance within the given set of constraints for a given situa-
tion. This theoretical optimum may then be used as an Index of Performance
with which to judge the performance of competing physical systems,

It must be asked why this approach is suggested when it obviously fail-
sd with linear systems. Considerable effort was extended in attempts to ob-
tain general Indices of Performance for linear systems, It will be recalled
that such IP's were sought in terms of gystem parameters. In this new effort
the IP will be formulated in terms of the constraints ‘on the system, Such
constraints might be maximm force or torque, maximum power or a finite
stored energy with which to accomplish the task., In effect these are the
basic and fundamental nonlinearities of the system, and meaningful maximm
performance values can be formulated within them, Such constraints do not
exist in linear systems, of course, and so it was impossible to formulate

such a policy concerning them in the linear portion of this study. Since
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physical constraints exist universally in practice, this new approach should
be of wide applicability.

To establish the optimm system within a given set of constraints it is
necessary to define the sense in which the word optimum is used, Most of the
work done to date on the optimum problem concerns the time optimum case. The
desired task is to reduce the error to zero in minimm time, This is a reson-
able approach, although perhaps not the simplest, and is discussed in Section
5.3, In Section 5.2 the conventional phase plane anmalysis is extended to the
approximate calculation of the response to an arbitrary input. Of course the
practical limitation of the phase plane to second order systems severely
limits the usefulness of this approach. It was not thought necessary to in-
clude a separate section in this chapter for the DIDF. This technique is
definitely of use in finding the rerponse of a nonlinear system to a sinu-
soidal input, but the method has already been discussed in the chapter on
the stability of forced systems.,

In Section 5.4 the response of a nonlinear system to random noise is
discussed. At first glance this might seem to be a digression from the main N
stream of this survey. It must be pointed out that this is not so.

Unfortunately the carry-over of linear system concepts and points of
view in the thinking of many investigators when they tura to nonlinear sys-
tems seems doomed to failure. This persistance would appear to be the only
logical answer, for example, in the continued and unwarranted attention '
paid to the response of a nonlinear system to a sinusoidal driving function.
The sine wave no longer reigns supreme in nonlinear system analysis; it is
reduced to just another special input that provides no special insight to the

overall behé*ior of the nonlinear system,
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Wiener has proposed that the basic and most general input for a non-
linear system is the random signal provided by Brownian motion. He points
out that from the response of a nonlinear system to Brownian motion, it is
possible to predict its response to any input; much as it was possible with
the response to sine waves in linear systems, Thus Brownian motion input
occupies the same position with raspect to nonlinear systems as does the
sinusoidal input to linear systems. This concept appears very powerful,
t1lthough it is not yet in an operational condition, and it is discussed in

Section Solbo

5.2 The Phase Plane for Forced Systems

The phase plane can be used to calculate and display the response of
forced second order systems (Gibson [77] ). The approach is, of course, not
a3 simple as with autonomous systems but is still quite practical. The in-
put may be arbitrary and the approach makes use of all of the convenience of
construction methods, such as the delta method and isocline method, that are
available for autonomous systems,

The method is based on representing the actual input by a train of
equivalent impulse functions., It is also necessary to represent the system
nonlinearity in an equivalent piecewise linear fashion. Each impulse is
considered as an initial condition for the interval between it and the next
pulse, superimposed on the final condition of the system at the end of the
preceeding interval. The central convenience of this approach lies in the
fact, as pointed out by Trimmer [78] , that in a second order system an
impulse appears simply zs a sudden increment of velocity in the system.

Thus no change need be made in the isoclines or delta function used in the

construction of the phase portrait of the autonomous system. The method
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appears to be of promise as an approximation technique for forced second-
order systems but requires further experience before it can be recommended
as a method for obtaining proof of compliance to performance specifications.
Gibson [77] works several examples, but his presentation is not complete or

exhaustive,

5,3 Time Optimum (Switched) Nonautonomous Systems

Although most studies of the optimum control problem restrict themselves
tc the autonomous system, a few workers have considered the more difficult
problem of time--optimum nonautonomous systems, Amoung these are Krasovskii
[79] , Kalman and Koepcke [80] , LaSalle [20] and Fuller [81].

LaSalle has, developed a number of basic theorems for forced, time vary-
ing parameter, time cptimum control systems, but he does not discuss the
engineering implications of his work., Kalman and Koepcke point cut certain
of the implications of such systems, and Fuller further clarifies the
situation.

It is no longer sufficient in general to use only the state variables
of the autonamous system for the description of the forced system. The state
variables to be fed into the logic element or controller must now consist of
a state description of the plant plus a state description of the input

{x@} = pe){x@} + Be)] Q@) + {r} (5-1)

It must be pointed out that this formulation of the equations of a non-

linear closed loop system is not complete, A further nonlinear relation

will be required to rclate-{x(ti} and {U(ti}o For example in the system in
Figure 3.1, it will be found convenient to identify the state variables with
error, the steering function with m, and the forcing function with the input.

Thue in matrix ferm
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fe) = e { e@)] « )] me} {ne)} (5-2)
whers 7(t) of equation 5-1 is now say g(r) = n(t)
Now m = f(e) say., It will be impossible to substituie this relation into the
matrix formulation and manipulate bscause matrix algebra is a linear algebra.
Thus the matrix relation is an open loop description of a portion of the sys-
tem, When the nonlinzar relation is considered after the matrix manipula-
vions are ccmplete, the most difficult problem still remains. Most authors
ignore this pocblem completely although a few of the bravest acknowledge its
existence., None solve ii,

In order to define the optimum trajectory and the optimum switching
boundaries in the metheds discussed in the literature the input must be
defined in the form of a differentiable function, 2.g. a polynomial. This
is a restriction. Note that under these conditions the optimum switching
boundaries are directly depend«nt upon the description of the input signal,
This means that the complexity of the system will rise rapidly ir this
approach is followed with the result that all insight will be lost, Second-
ly, since the optimum design ‘s uniquely tied to the defined inpui state
coordinates, even if it could bs instrumented, the system would be useful
for only the one input for which it was designzd., Of course this situation
is impossible, For*unately, however, ssvera) alternative schemes present
themselves,

Kalman and Koepcke [80] suggest thai the aztual input be approximated
with a curve of given degres ove: given segmsars 51 Lime, Thewn tne co-
efficients of the approximating polynamial need be found only once per time
segment, These numbers could be antered into the optimum swiiching curve

calculations, thus, the switching boundaries could be ricalculated once sach
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segment, The concept of switching boundaries in the state space for a
nonautonomous system appears in reality, however, to be a rather cumber-
some one and perhaps deserves to be abandoned for a more sophisticated

approach. Bellman suggests that the concept of a multistage decision

policy or dynamic programming is directly applicable here [54].

The philosophy of approach is as follows, A general performance index
or payoff function i3 defined in terms of the system state variables and the
state description of the input,

oo
IP = Q (xi,xQ,zB,...xh,rl,rQ,...,rh)dt (5-3)
o

At givén instances of time the question is asked, which state of
the relay will optimize the IP at this time? The question is asked
sequentially in time and the relay adjusted accordingly as the solution
proceeds, So long as the system, described in terms of the state variables,
possesses the Markovian Property ([54], p. 54) (that is, we do not have
time delays nor a "delay differential equation®" to describe the system)
Bellman has shown that a sequence of such optimum decisions is optimum
overall. Naturally the engineering implementation of such a scheme is
considerably more complex than this naive description might indicate, and,
in fact, engineering feasibility studies of it are only now being injtiated
in various engineering research laboratories. Without doubt, this is a
most challanging area for future research and ties in directly with the

already wide spread activiiy on the concept of adaptive control.

5.4 Response of Nonlinear Systems to Random Inputs

The response of a certain class of nonlinear systems to random inputs
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has been investigated by some researchers. Considerable effort has been
expended in investigating the theory of nonlinear filters. Wiener [82]
considers the response of a particular type of nonlinear filter to Brown-
ian motion input. The type of filter to which Wiener's method is applicable
is the one in which it is possible to separate the filter into two distinct
blocks in tandem, one block being linear and the other nonlinear of the
functional, instantanecus (non memory) type, Wiener shows that the know-
iedge of the Brownian motion response of such a system is sufficient for
the determination of its response to any other input. The application of
this theory to the investigation of the response of a nonlinear feedback
system is not known at the moment. Bose [83] also considers the problem

of determining the response to random inputs of a filter similar to the

one treated by Wiener,

The determination of some statistical characteristics of the output
of certain nonlinear nonclosed loop systems with random inputs is consider-
ed by Rice [84), Laning & Battin [85] and Sridhar [53].

The problem of analysis and synthesis of nonlinear feedback systems
subject to stochastic inputs is certainly a wide open area for reseurch
and warrants considerable effort. This is evident when one considers the
work of Wiener, since this provides a fresh viewpoint to the whole problem
of analysis and synthesis of nonlinear systems. At the present Wienér's

work is not applicable to any but the most trivial practical cases.
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